THE HEATING OF BUTT-JOINED ORTHOTROPIC PLATES BY
HEAT SOURCES WITH HEAT EXCHANGE

Yu. M. Kolyano UDC 539.377

A general solution is given for a nonstationary problem in heat conductivity and the corre-
sponding quasi-static problem in thermoelasticity for compound semi-infinite plates heated
by heat sources in the intermediate layer. -

1, Conditions for the Thermomechanical Contact of Orthotropic Plates., Let two orthotropic plates
of different materials be joined by a thin orthotropic layer between them (Fig. 1), Heat sources are dis~
tributed throughout the volume of the system, heat exchange with thé external medium takes place across
its surface in accordance with Newton's law, and there is ideal thermal contact between the plates and the

intermediate layer {1].

In this case,to determine the nonstationary temperature field in the plates we have the equation of ther~
mal conductivity {2] and the initial condition
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the conditions for the nonideal thermal contact of compound orthotropic plates, which we obtain, as for iso-
tropic plates without heat sources [3], in the form
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Fig, 1. Plates {1, 2) butt-joined by a Fig, 2.
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When the thermal conductivity problem is symmetric about the plane z = 0 [4],
obtain respectively

LT — 2
ro.

T

(Ti"—' o} = — Wy,

T;=0 for t=0

g T,
(pﬁ*“‘%“)(T1+Tz)+2(7v?cx TL-*—*?&;?z 2 ):“"‘2%’
Fes \ dx

dx

E .
(ws-g— %c>dx,‘ ‘7:“"'%" Sx(ws%— &)dx‘
) rzs h’ e . rzs

If in (6) we ignore the products risAys, rECl, r¥§o)

28

where

ud
i
¥ ]s?
ol
i
é“‘""“‘b;

o 0Ty

aT,
_ko .2 ::__wa,
b= Ty s
ar Mo\ wowy
2<T1-Tz>——r:2(xﬁx—-§f+xsz—ﬁ)=;:ws“ (x=0),

where

25

b
1 1
W = fwsdx, w0 = o xwdx, 1o = om0l = 20y
A z8

12 2 . ) ar bl aT. _ - .
(=5 — ) m—raro (i G+ T ) =2 =0,

Compound semi-
infinite plates (1, 2).

instead of (1)~(3), we

7gs we obtain the conditions
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Corresponding to the conditions (8) for nonideal thermal contact, we obtain the mechanical conditions
in the same way as were obtained [2] the boundary conditions at the edge of orthotfropic plates supported by
a thin orthotropic column:
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x1 ¥ us
# [[1 v, \do, 0o .12 ,
s Lo B o e (B e = o s e w0,
where
. 4
8ys = EysF! 8y = EysI’ I x"é‘"ahs‘
h [
1 Ty+T. 3 T,—T.
0= — | Tydr=-2T72 g*— Tyy = 2112
T ) T o ixsd& o

Conditions (6) and (7) are called the conditions for the nonideal thermomechanical contact of ortho~
tropic plates joined by a thin orthotropic layer.

If we put Ag,s, cy, v, b = 1/rhg, wk, wi gys» 8% equal to zero in (6), (7), we obtain the condi-
tions for the ideal thermomechanical contact of orthotropic plates:

Ay ZTI == Ay ZTZ » Ty=Ty
X X (8)
Opy == Opgr Oy == Opypy Uy =y, Uy =0y for x=0,
We note that if wl # 0, the first condition of (6) has the form
PYPLE S Y/ A S N ©)
ox X

Condition (9) can be used to compute the thermal processes when plates of different materials are butt
welded,

2. Temperature Stresses in Compound Semi-~Infinite Plates, Consider orthotropic plates joined by
a thin orthotropic layer between them with heat sources only in the intermediate layer (Fig. 2). In Eq. (4),
where te = 0, wj = 0, and conditions (6), with initial condition (5), we make an integral Fourier transform
with respect to y and a Laplace transform with respect to 7, solve the resulting equations with the trans-
formed boundary conditions, and find the following expression for the Fourier— Laplace transforms of the
temperature system:

T; = A exp(—¥%), (10)

where - 0 0y -t
Ay = 2042 + 6y @5+ 3 (2 + hav)ws 1D,

A, = 2042 -+ 63y @E — 3 (42 + D) W) D

p 2.9 g 2 2 _.1_.2_. = 2‘-”—@-
2 e ki R - S a; == '
Uil A A el R R )

2 _ My 2 Gt a ——1 2 = hgat + G :

P el T = » i = * - H p + ’
i Mgt K AiB z o v y% ) e

Fe g [ @ renew—pode
G0 0

D = (67\-9:2'\’2 + v2) (27»2”1 +v3) + (67\:21Y1 -+~ v8) (27"22'\72 + ¥3).

If we return from (10) by the inversion theorem for Fourier— Laplace transformations to the originals,
we obtain the general solution for the nonstationary thermal conductivity problem for the system under con~
gideration., The stressed-deformed state due to the temperature field is defined by the familiar equation
[5] ‘
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subject to (7).
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If we make a Fourier— Laplace transformation of (11)-(13), (7}, as in [2, 6], we obtain expressions

for the transforms of the temperature stresses when the characteristic equation p:‘i‘ — 2501,{1% +8; = 0 has real
and unequal roots:

where

Oy = — N [C; exp (— Ny %) -+ D exp (— %) + Q.Tl,
Evi = Cin?;‘ exp (_— n_ﬁx) + Din%ﬁ‘ exp (“" Tlmx) + QLY%T;’ (14)
Oyxi = — M [Ciny exp (— 1) + Dy 5P (— 1) + Qv Tl

LI Y
Ot‘u-'f} agi Yi

R i Py e S Eyo =gl 0l Ny = by M)
c d; - =
C. E= e 258 R D Lo , (43 (s}
i do i do xy Y

dﬁ =5 (nn: T]In) B (nxgs ﬂm) + g(ﬂn: ﬂf_,) g (nn;u nm) e g(nn’ nng) g(ﬂxg! “m) - E(ﬂm’ ﬂy) E(’Im, nn)

QM) =

+ Es ) & (g W) + S (g M) S (g M)
€y =P () B (Mg Nyz) + 1 (03) & Mygp Myp) — 1 (M) E g Mpyy)
- —E (g E(ygy Mp) + S0y EMpgp M)+ R0 S Mgy M)
dy = P () B (Mg Ny + LMy E Mg M) — 1 () E My M)
— L) E (g M) + T E e M) + R(0p) S (g M)
€ = P () E Mg ) — P () & (M M) + L () S (e M)
RO EMygyy M) — Ry 0y M) + S0y By My
dy = P () E (M, M) — P (g) E (g M) + £ 013,) S (g, )
+ R (ny) § (g M) — R (M) EMye M) + § () By My s
B (s Ms) = F () @ ) — [ (M) @ (M5
Ppy) = Vi~ 21— %) 9 () — (@ + Y1 =92 [ (Mg

g(ﬂki! ﬂmn) == nmn (p(,q z) f(nk!) G = %’ G*z gys .

G, IR T WY Y
N = i Vi 2 T‘k» Ni .
In In GsGs i Exi Eyi Gs

4

[ ( Vg 1 ) 2] 1
. ¢ -+ e B T = X (- xw
E,; E I R (sz)

xi i

GS — 2 4 “‘g%w@ — )

1531



32 g2
/ . Jy
\ %
16 e———ed R 55
§$: i
)y . \ 2 —
9 —
4 7 P o !
or =2 U ==
A et
//?/ L“' mzE2 Q.f
? / — # ‘
\/ oF .
st X
K e ; # 4% PR b
Fig. 3 Fig. 4

Fig, 3, Temperature stresses as functions of H for b = 0 and
1, mgy =0, 0.5, and 2.

Fig. 4, Temperature stresses as functions of b for H = 0.34,
mey =0, 0,5, and 2,
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If we put py; = BT = Mpj OF pg; = B4 + rii, Bp= - riiin (14), we find expressions for the transforms
of the temperature stresses when the roots of the above equation are real and pairwise equal (Fpy, jg; > 0)
or complex (u; + ril, —p; = 51, p; >0, ;> 0).

If we return in (14) to the originals, we obtain the general solution of the quasistatic thermoelastic
problem for the plate system under consideration,

We now assume that the density of the heat sources in the intermediate layer is
W,=gcosoyd(x, 2,

the Fourier transformation of which has the form [7]

W,=q ‘/—f}lﬁm + )+ 8(n—w)d(x, 2). (15)

We substitute (15) in (14) and pass to the limit in these variables as p — 0. If we then use the inver-
sion theorem for the Fourier transformation to return in the expressions thus obtained to the originals, we
obtain the temperature stresses in compound plates when the temperature conditions are stationary:

Oy = Exi (o) cos oy,

_ _ (16)
Ty =0y (@) COS OY,  Opyy = — Oy () £ siN Y. ‘
When both the plates are made of the same material, Egs. (16) become
o, = —{Cexp(—pX) +Dexp(— pIIX) 4 QoTol cosY,
0, = [C p2exp (—p,X) + DpZ exp (— pX) +Qu¥*Tyl cos Y, : @7
0}, = — [Cprexp (— 1, X) + Dy exp(—pyyX) + QyTl sin¥,
cﬁ=%‘}§%}, C= w:;;—, D =~%, Y'rl-my, X = ox,
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Suppose both plates are made of glass Textolite KAST-V [8], while the intermediate layer is made of
epoxide resin [9, 10]. If we substitute in (17) the values of the thermophysical and mechanical characteris-
tics for the materials of the plate and the layer, for x = 0, y = 0 we obtain the following nondimensional
temperature stresses:

. 017/ 1 B
o= [( oy + 183 ) M— O.7069N] Q.
(18)

. 017 [{083 ,
o= [(%;ﬁ +0.12.1.83 ) M+ 0.83-2.642N] 00,

where
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If in (17) we ignore the thermophysical and mechanical characteristics of the layer, i.e., we put m;,
mg, Mg, My equal to zero, for x =0, y =0, and plates of glass Textolite KAST-V we find that

' 2
=g 1L ¥ \__1 |
¥ 1,5189 1.5189
19)
) 0.83Q, + 1
o =y [ 1 ——Y_ ) — 0 .
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From (18) we computed the temperature stresses (T;‘; and ¢f as functions of H, b, m as shown in
Figs, 3, 4. For comparison, Fig. 4 also contains the temperature stresses (dotted lines) computed from
(19). We see from the graphs that the intermediate layer has a significant effect on the temperature stres-
ses in compound plates when there is heat exchange,

NOTATION

tix, y, 2z, T)
T

.
I'i_l 4
Tzi = l/azi
Axis Ayi
Cy

0 0 0
Axis Ayi’ Ci
t5

0
?‘ys

is the temperature of the plates;

is the time;

is the internal thermal resistance of the plates in the z-direction;

is their resistance to heat exchange on the surfaces z = £06;

are the coefficients of thermal conductivity of the plates in the x and
y directions;

is their heat capacities;

are the reduced coefficients of thermal conductivity in the x and y
directions and the heat capacity;

is the temperature of the medium surrounding the surfaces z = £6 of
the system;

is the reduced coefficient of thermal conductivity for the layer in the
y direction;
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is its reduced heat capacity;

is its cross-sectional area;

is the thickness of the system;

is the thickness of the layer;

is the density of the heat sources in the plates and the layer;

is the internal contact thermal resistance of the layer in the z and x
directions; .

is the rigidity of the layer in tension (compression)andbending rigidity;

is the moment of inertia; '

is the temperature coefficient of linear expansion of the layer in the y
direction;

are the temperature coefficients of linear expansion of the plates in
the x and y directions;

are the coefficients of the temperature stress tensor for the plates
and of the deformation tensor;

are the displacements of the plates in the x and y directions;

are Young's moduli for tension (compression) of the plates in the x and
y directions; '

is Young's modulus for tension (compression) for the layer;

are Poisson's coefficients for the plates, defining compression in the
y direction and extension in x direction, and conversely;

is the shear modulus for the plates, defining the change in the angles
between the x and y directions;

is the Dirac delta function;
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